30 research outputs found

    Continuous joint measurement and entanglement of qubits in remote cavities

    Get PDF
    We present a first-principles theoretical analysis of the entanglement of two superconducting qubits in spatially separated microwave cavities by a sequential (cascaded) probe of the two cavities with a coherent mode, that provides a full characterization of both the continuous measurement induced dynamics and the entanglement generation. We use the SLH formalism to derive the full quantum master equation for the coupled qubits and cavities system, within the rotating wave and dispersive approximations, and conditioned equations for the cavity fields. We then develop effective stochastic master equations for the dynamics of the qubit system in both a polaronic reference frame and a reduced representation within the laboratory frame. We compare simulations with and analyze tradeoffs between these two representations, including the onset of a non-Markovian regime for simulations in the reduced representation. We provide conditions for ensuring persistence of entanglement and show that using shaped pulses enables these conditions to be met at all times under general experimental conditions. The resulting entanglement is shown to be robust with respect to measurement imperfections and loss channels. We also study the effects of qubit driving and relaxation dynamics during a weak measurement, as a prelude to modeling measurement-based feedback control in this cascaded system.Comment: 17 pages, 8 figures. Published versio

    Controlling Quantum Information Devices

    Get PDF
    Quantum information and quantum computation are linked by a common mathematical and physical framework of quantum mechanics. The manipulation of the predicted dynamics and its optimization is known as quantum control. Many techniques, originating in the study of nuclear magnetic resonance, have found common usage in methods for processing quantum information and steering physical systems into desired states. This thesis expands on these techniques, with careful attention to the regime where competing effects in the dynamics are present, and no semi-classical picture exists where one effect dominates over the others. That is, the transition between the diabatic and adiabatic error regimes is examined, with the use of such techniques as time-dependent diagonalization, interaction frames, average-Hamiltonian expansion, and numerical optimization with multiple time-dependences. The results are applied specifically to superconducting systems, but are general and improve on existing methods with regard to selectivity and crosstalk problems, filtering of modulation of resonance between qubits, leakage to non-compuational states, multi-photon virtual transitions, and the strong driving limit

    Charting the circuit QED design landscape using optimal control theory

    Full text link
    With recent improvements in coherence times, superconducting transmon qubits have become a promising platform for quantum computing. They can be flexibly engineered over a wide range of parameters, but also require us to identify an efficient operating regime. Using state-of-the-art quantum optimal control techniques, we exhaustively explore the landscape for creation and removal of entanglement over a wide range of design parameters. We identify an optimal operating region outside of the usually considered strongly dispersive regime, where multiple sources of entanglement interfere simultaneously, which we name the quasi-dispersive straddling qutrits (QuaDiSQ) regime. At a chosen point in this region, a universal gate set is realized by applying microwave fields for gate durations of 50 ns, with errors approaching the limit of intrinsic transmon coherence. Our systematic quantum optimal control approach is easily adapted to explore the parameter landscape of other quantum technology platforms.Comment: 13 pages, 5 figures, 2 pages supplementary, 1 supplementary figur

    Non-perturbative analytical diagonalization of Hamiltonians with application to coupling suppression and enhancement in cQED

    Full text link
    Deriving effective Hamiltonian models plays an essential role in quantum theory, with particular emphasis in recent years on control and engineering problems. In this work, we present two symbolic methods for computing effective Hamiltonian models: the Non-perturbative Analytical Diagonalization (NPAD) and the Recursive Schrieffer-Wolff Transformation (RSWT). NPAD makes use of the Jacobi iteration and works without the assumptions of perturbation theory while retaining convergence, allowing to treat a very wide range of models. In the perturbation regime, it reduces to RSWT, which takes advantage of an in-built recursive structure where remarkably the number of terms increases only linearly with perturbation order, exponentially decreasing the number of terms compared to the ubiquitous Schrieffer-Wolff method. In this regime, NPAD further gives an exponential reduction in terms, i.e. superexponential compared to Schrieffer-Wolff, relevant to high precision expansions. Both methods consist of algebraic expressions and can be easily automated for symbolic computation. To demonstrate the application of the methods, we study the ZZ and cross-resonance interactions of superconducting qubits systems. We investigate both suppressing and engineering the coupling in near-resonant and quasi-dispersive regimes. With the proposed methods, the coupling strength in the effective Hamiltonians can be estimated with high precision comparable to numerical results.Comment: 19 pages, 8 figures, with more examples for NPAD including cross-resonanc
    corecore